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Prolonged Auditory Brainstem Response in Universal Hearing
Screening of Newborns with Autism Spectrum Disorder
Oren Miron , Rafael E. Delgado, Christine F. Delgado , Elizabeth A. Simpson , Kun-Hsing Yu ,
Anibal Gutierrez, Guangyu Zeng , Jillian N. Gerstenberger, and Isaac S. Kohane

Previous studies report prolonged auditory brainstem response (ABR) in children and adults with autism spectrum disor-
der (ASD). Despite its promise as a biomarker, it is unclear whether healthy newborns who later develop ASD also show
ABR abnormalities. In the current study, we extracted ABR data on 139,154 newborns from their Universal Newborn
Hearing Screening, including 321 newborns who were later diagnosed with ASD. We found that the ASD newborns had
significant prolongations of their ABR phase and V-negative latency compared with the non-ASD newborns. Newborns
in the ASD group also exhibited greater variance in their latencies compared to previous studies in older ASD samples,
likely due in part to the low intensity of the ABR stimulus. These findings suggest that newborns display neurophysiologi-
cal variation associated with ASD at birth. Future studies with higher-intensity stimulus ABRs may allow more accurate
predictions of ASD risk, which could augment the universal ABR test that currently screens millions of newborns world-
wide. Autism Res 2020, 00: 1–7. © 2020 The Authors. Autism Research published by International Society for Autism
Research and Wiley Periodicals LLC.

Lay Summary: Children with autism spectrum disorder (ASD) have slow brain responses to sounds. We examined these
brain responses from newborns’ hearing tests and found that newborns who were later diagnosed with autism also had
slower brain responses to sounds. Future studies might use these findings to better predict autism risk, with a hearing test
that is already used on millions of newborns worldwide.
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Introduction

Autism spectrum disorder (ASD) is a neurodevelopmental
disorder that includes deficits in social communication
and social interaction, and restricted behavior
[McPartland, Reichow, & Volkmar, 2012]. The rate of
ASD is estimated to be approximately one in 59 children
[Christensen et al., 2016], and although behavioral signs
of ASD are present in many cases by the age of
18 months, diagnosis is not typically made before 3 to
4 years of age [Ozonoff et al., 2010; Zwaigenbaum
et al., 2005, 2015]. Yet, earlier identification and inter-
vention are critical for improving child outcomes and
decreasing the economic costs associated with ASD [Daw-
son et al., 2010; National Research Council, 2001].

The auditory brainstem response (ABR) test—a test used
for Universal Newborn Hearing Screening (UNHS)—may
be an untapped opportunity to evaluate the risk of

developing ASD [Mason & Herrmann, 1998; Morton &
Nance, 2006]. The ABR test uses surface electrodes to
measure the auditory nerve and brainstem responses to
sounds [Brama & Sohmer, 1977]. The ABR waveform
includes five waves of electrical activity within the
brainstem, with the first wave (wave I) occurring in the
auditory nerve, and the fifth wave (wave V) occurring in
the lateral lemniscus [Cohen et al., 2013].

Previous studies identified abnormal ABR amplitude in
2- to 6-year-old children with ASD [Santos et al., 2017]
and prolongation of the ABR (particularly wave V-posi-
tive) in children with ASD [e.g., 8- to 13-year-olds:
Maziade et al., 2000; 0.2 months to 21-year-olds: Miron,
Beam, & Kohane, 2018; 2- to 3-year-olds: Roth, Muchnik,
Shabtai, Hildesheimer, & Henkin, 2011]. A similar ABR
prolongation was also identified in infants from the neo-
natal intensive care unit (NICU) who were later diag-
nosed with ASD [average of 10 days old: Cohen
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et al., 2013; 0.2 to 6.5 months old: Miron et al., 2015],
suggesting these abnormalities may be present early in
development. However, it remains unknown whether
healthy newborns outside of the NICU, who will later
develop ASD, would also show ABR differences compared
to newborns who do not later develop ASD. Therefore,
there is a need to examine ABRs in a larger and younger
cohort of healthy infants.
Previous studies acquired ABRs using high sound inten-

sities (80–85 dB normal hearing level (nHL)), which may
be particularly well suited for detecting abnormalities
related to ASD. In contrast, routine hearing screenings
use low sound intensities (35 dB nHL) on most healthy
newborns. It is, therefore, unclear whether this lower
intensity screener may also identify infants who go on to
develop ASD. If so, newborns could potentially be
screened for ASD risk using existing universal ABR hear-
ing tests that currently screen millions of newborns
worldwide.
The current study, therefore, examined newborn

infants from an entire birth cohort (not only NICU) and
used lower sound intensity (35 dB nHL) hearing screen-
ing tests. We hypothesized that newborns later diagnosed
with ASD would exhibit ABR prolongation compared to
newborns the non-ASD group, reflecting a possible new
biomarker for ASD at birth.

Method
Study Groups

ABR data from UNHS testing and ASD data were linked
and de-identified in a retrospective case–control design.
The case group included newborns later diagnosed with
ASD (n = 321) and the control group consisted of new-
borns who did not receive an ASD diagnosis
(n = 138,844). Phase was calculated on the entire sample,
while Vn latency was calculated for cases that had wave-
form data (93% of total sample), which included 286 new-
borns in the ASD case group and 129,360 newborns in
the non-ASD control group. The mean ABR testing age
for the newborns who were later diagnosed with ASD was
1.76 days (Range = 0–26, SD = 3.08) and the mean ABR
testing age for newborns in the non-ASD group was
1.86 days (Range = 0–31, SD = 3.22). The ASD group was
76.95% male, while the non-ASD group was 51.11%
male. The rate of NICU admission was 7.79% in the ASD
group and 9.72% in the non-ASD group.

Auditory Brainstem Response Data

This study was approved by the Institutional Review
Board at the University of Miami. The ABR data were
obtained from UNHS from tests performed in the state of
Florida, United States, between 2009 and 2015. The ABR
testing was performed by the Pediatrix Medical Group

(a MEDNAX® company), which screens 850,000 new-
borns a year for hearing impairment in the United States.
The Smart Screener-Plus from Intelligent Hearing Systems
Corp was the ABR device used to collect these data. The
test included placing an earpiece in the newborn’s ear
and delivering click sounds at 35 dB above nHL at a rate
of 77 clicks per second in the right ear and 79 clicks per
second in the left ear. The clicks create an electrical activ-
ity, which is recorded by a surface electrode and used to
extract the ABR waveform. The series of 77/79 clicks were
repeated to increase the accuracy of the measurement
until the algorithm determined if the brainstem
responded to sounds. This hearing screening test was per-
formed in the hospital in the first week after birth unless
it was postponed due to a medical condition.

The UNHS testing used low intensities, which makes it
more difficult to differentiate most wave components. To
address this challenge, we focused on two measures: the
negative wave that follows wave V positive (V-negative
latency), which is easier to detect than the positive wave,
and the phase of the ABR response. The V-negative
latency is based on the waveform that includes 61 sam-
ples from 0.25 milliseconds after the start of each sound
stimulus to 15.25 milliseconds after the end of each stim-
ulus presentation. The earphone sound travel time is 0.9
milliseconds, which is subtracted from the latency from
sound presentation to calculate the final latency, from
the sound onset. V-negative latency was determined for
each waveform by searching for the minimum amplitude
between 6.35 and 14.35 milliseconds (Fig. 1). The laten-
cies of wave V-negative and the other waves impact the
ABR phase, which means a delay in those waves will also
cause a delay in the phase. The phase itself was calculated
based on the Fast Fourier Transform [Tlumak, Durrant,
Delgado, & Boston, 2011] of 1.024-sec-long averaged ABR
response sequences.

Autism Spectrum Disorder Data

We obtained children’s ASD status from the Florida
Department of Education Children’s Registry and Infor-
mation System (CHRIS). This database contains informa-
tion on ASD eligibility determination for children ages
3 to 5 years who were referred to the Florida Diagnostic
and Learning Resources System.

Analysis of ASD and ABR Data

We linked the ABR records and the ASD records using
Structured Query Language. A match required the ABR
and ASD records to have a perfect match on the date of
birth, sex, and name. The ABR records that were not mat-
ched to the ASD records were included in the non-ASD
group. After completing the linkage, the data were de-
identified to ensure confidentiality.
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For the wave V-negative (Vn) analysis, we excluded
cases that did not have a waveform from both the right
and left ears. Phase and V-negative latency were analyzed
separately to compare the ASD and non-ASD groups. We
performed these tests for each ear separately. For this
comparison, we used an Analysis of Covariance
(ANCOVA) that accounted for the covariance of testing
age (in days), sex (male, female), NICU status (NICU,
non-NICU infant), click amount, and rejected click
amount, with statistical significance defined as ps < 0.05,
two-tailed (Tables S1 and S2).

Results

The mean number of averaged stimulus presentations
(sweeps) in a test for the ASD group was 16,614
(SD = 10,397) for the right ear and 17,016 (SD = 10,591)
for the left ear, and in the non-ASD group it was 16,470
(SD = 10,503) for the right ear and 16,893 (SD = 10,764)
for the left ear. The mean number of rejected sweeps
(unreliable result) in a test for the ASD group was 3,528
(SD = 4,380) for the right ear and 3,595 (SD = 4,475) for
the left ear, and in the non-ASD group it was 3,010
(SD = 3,959) for the right ear and 3,087 (SD = 4,058) for
the left ear.

ABR phase in the right ear was statistically significantly
prolonged in the ASD group (M = 152.53�; SD = 35.62)
compared to the non-ASD group (M = 143.54; SD = 33.86;
ANCOVA F(1, 139158) = 12.94, P < 0.001; Fig. 2A). ABR
phase in the left ear was also statistically significantly pro-
longed in the ASD group (M = 132.30; SD = 35.3) com-
pared to the non-ASD group (M = 125.5; SD = 35.5;
ANCOVA F(1, 139158) = 5.33, P = 0.021; Fig. 2B).

Vn latency in the right ear was statistically significantly
prolonged in the ASD group (M = 10.77 milliseconds;
SD = 1.44) compared to the non-ASD group (M = 10.51;
SD = 1.54; ANCOVA F(1, 129639) = 3.92, P = 0.048;
Fig. 3A). We did not detect a prolongation in Vn latency
in the left ear in the ASD group (M = 10.18, SD = 1.53)
compared to the non-ASD group (M = 10.06, SD = 1.56;
ANCOVA F(1, 129639) = 0.29, P = 0.591; Fig. 3B).

Discussion

We identified phase increases and latency prolongation
in the ABRs of newborns later diagnosed with ASD,
which were especially pronounced in the right ear. These
findings are similar to the reported prolonged ABR laten-
cies in older infants and children with ASD [7- to 13-year-
olds: Fujikawa-Brooks, Isenberg, Osann, Spence, &
Gage, 2010; 0.2- to 6.5-month-olds: Miron et al., 2016;

Figure 1. Averaged waveform in ASD vs. Non-ASD. (A and B) Averaged waveform with millivolt divided by the standard deviation of
the waveform. “x” indicates the V-negative point. Vn in the ASD group (dark red line) is prolonged compared to the non-ASD group
(light blue line).
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0.2 months to 21 years old: Miron et al., 2018; 2- to
3-year-olds: Roth et al., 2011; 4- to 12-year-olds: Wong &
Wong, 1991]. We found that the prolongation of phase
and V-negative latency in ASD was greater in the right
ear compared to the left ear, similar to the reports in older
infants who are later diagnosed with ASD [Miron
et al., 2016].
The current study’s findings of prolonged brainstem

response to sound in ASD are consistent with previous
findings of prolonged and abnormal cortical response to
sound in 7- to 14-year-old children with ASD [Roberts

et al., 2010] and 2- to 3-year-old boys with ASD and
megalencephaly [De Meo-Monteil et al., 2019]. The
brainstem prolongation could be due to anatomical
abnormalities in the brainstems of those with ASD, such
as those observed in the olivary complex at 2 to 36 years
of age [Kulesza, Lukose, & Stevens, 2011].

The current study’s strengths and limitations both
derive from our reliance on existing data from UNHS.
One strength of our approach is that the UNHS data
allowed us to examine a larger, younger, and healthier
sample compared to previous studies. However, the

Figure 2. ABR Phase in ASD vs. non-ASD. (A) Y-axis indicates the right ear phase (in degrees) in the ASD group (dark red) vs. the non-
ASD group (light blue). The distribution of the values is indicated by the violin shape, the median is indicated by the middle line and
the 25% and 75% quartile are indicated by the bottom and top of the box. (B) Same as part A for the left ear.

Figure 3. Vn latency in ASD vs. non-ASD. (A) Y-axis indicates the right ear Vn latency (milliseconds) in the ASD group (dark red)
vs. the non-ASD group (light blue). The distribution of the values is indicated by the violin shape, the median is indicated by the middle
line and the 25% and 75% quartile are indicated by the bottom and top of the box. (B) Same as part A for the left ear.
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UNHS ABR data were from tests using 35 dB nHL, which
is a lower sound intensity than those used in most ASD
studies, which more often use 85 dB nHL [Miron
et al., 2016]. Our use of these lower intensity stimuli
resulted in a weaker signal, and a lower signal-to-noise
ratio compared to higher intensity stimuli, preventing us
from precise labeling wave V-positive. Thus, we focused
on wave V-negative, which is easier to detect, and ABR
phase, whose timing is affected by V-positive and other
waves and is more robust in noisy conditions. V-negative
and phase have not been studied as widely as wave-V and
the current study is the first study to show V-negative
and phase abnormalities are associated with ASD. There
is, therefore, a need to replicate our findings in future
studies of V-negative and phase to determine whether
they are clinically useful. In addition, the smaller signal-
to-noise ratio likely led to a larger standard deviation in
our latencies compared to previous ASD studies. As a
result, even though the mean latency difference between
ASD and non-ASD in our study was comparable to previ-
ous studies, the signal in our study was insufficient to
support a robust clinically useful classification model.
Even if future studies achieve sufficient accuracy for
detecting ASD risk, it will still be important for doctors to
rule out other diagnoses that affect ABR, such as hearing
impairment, and to refer infants for a behavioral ASD
diagnosis.

Future studies should test newborns who have a family
history of ASD and are, therefore, at elevated genetic risk
of ASD [Ciarrusta et al., 2020; Grove et al., 2019]—as well
as toddlers who have already been diagnosed with ASD.
Such studies should use higher stimulus intensities and
high-rate stimulation techniques to determine the ABR
settings that can most accurately identify children who
later develop ASD [Delgado & Ozdamar, 2004]. Studies
could also test for relations among prolonged ABR in ASD
with other biomarkers of ASD, such as genetic markers
[Bruneau, Bonnet-Brilhault, Gomot, Adrien, &
Barthelemy, 2003; Luo, Zhang, Jiang, & Brouwer, 2018].
Combining ABR and genetic biomarkers could improve
the classification of ASD and our understanding of ASD’s
early development. The existence of ABR biomarkers of
ASD in the first weeks after birth, as reported here, is an
evidence that, for a large group of these individuals, the
disorder is likely present before birth [Kong et al., 2012].

Further studies could also benefit from examining the
relationship among ABR markers, measures of ASD sever-
ity (e.g., Autism Diagnosis Observation Schedule) and
information on specific symptoms, such as
hyperreactivity to sound. Such analysis could also assist
in identifying whether specific ASD severity levels or
symptoms are better classified by ABR markers, given the
heterogeneity of ASD, which consists of numerous sub-
groups. Such studies might therefore create ABR markers
that accurately predict risk for one or more sub-groups of

ASD. Early detection of ASD risk could result in an earlier
diagnosis that may lead to earlier treatments and there-
fore better outcomes [Dawson et al., 2010].
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Supporting Information

Additional supporting information may be found online
in the Supporting Information section at the end of the
article.

Table S1. ANCOVA of Phase in ASD vs. Non-ASD in
Right and Left Ears
Table S2. ANCOVA of Vn Latency in ASD vs. Non-ASD
in Right and Left Ears
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